
Контрольная работ (7 класс)

по теме «Начальные геометрические сведения»

Вариант 1

- 1. Три точки B, C, и D лежат на одной прямой a. Известно, что BD=17 см, DC=25 см. Какой может быть длина отрезка BC?
- 2. Сумма вертикальных углов *МОЕ* и *DOC*, образованных при пересечении прямых *МС* и *DE*, равна 204°. Найдите угол *МОD*.

3. С помощью транспортира начертите угол, равный 78°, и проведите биссектрису смежного с ним угла. Укажите равные углы.

4* На рисунке прямая AB перпендикулярна к прямой CD,

луч *OE* биссектриса угла *AOD*. Найдите угол *COE*.

Критерии оценок

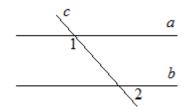
Оценка «5» - 4 правильно выполненных заданий

Оценка «4» - 4 выполненных заданий с недочетами


Оценка «3» - 3 правильно выполненных задания

Оценка «2» - 2 правильно выполненных заданий и меньше

Контрольная работа


по теме «Параллельные прямые»

Вариант 1

- 1. На рисунке прямые a и b параллельны, $1 = 55^{\circ}$. Найдите 2 = 2.
- 2. Отрезки *AC* и *BD* пересекаются в их общей середине точке *O*. Докажите, что прямые *AB* и *CD* параллельны.
- 3. Отрезок DM биссектриса треугольника CDE. Через точку M проведена прямая, параллельная стороне CD и пересекающая сторону DE в точке N. Найдите углы треугольника DMN, если $\Box CDE = 68^\circ$.

4*. В треугольнике $ABC \ ^{\square} \ A = 67^{\circ}, \ ^{\square} \ C = 35^{\circ}, BD -$ биссектриса угла ABC. Через вершину B проведена прямая $MN \ ^{\mathring{I}} \ AC$. Найдите угол MBD. (*Указание*. Для каждого из возможных случаев сделайте чертеж.)

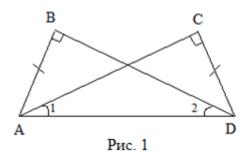
- 1. На рисунке прямые a и b параллельны, $\ ^{[]}\ 1=115^{\circ}$. Найдите $\ ^{[]}\ 2$.
- 2. Отрезки *AD* и *BC* пересекаются в их общей середине точке *M*. Докажите, что прямые *AC* и *BD* параллельны.

- 3. Отрезок AD биссектриса треугольника ABC. Через точку D проведена прямая, параллельная стороне AB и пересекающая сторону AC в точке F. Найдите углы треугольника ADF, если $\Box BAC = 72^{\circ}$.
- 4*. В треугольнике $CDE^{\ \square}$ $C=59^{\circ}$, $^{\ \square}$ $E=37^{\circ}$, DK- биссектриса угла CDE. Через вершину D проведена прямая $AB^{\ \dot{I}}$ CE. Найдите угол ADK. (Указание. Для каждого из возможных случаев сделайте чертеж.)

Критерии оценок

Оценка «5» - 4 правильно выполненных заданий

Оценка «4» - 4 выполненных заданий с недочетами

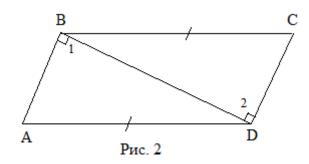

Оценка «3» - 3 правильно выполненных задания

Оценка «2» - 2 правильно выполненных заданий и меньше

Контрольная работа

по теме «Прямоугольный треугольник. Построение треугольника по трем элементам»

Вариант 1



1. Дано: $B = C = 90^{\circ}$, AB = CD (Рис. 1).

Доказать: [] 1 = [] 2 .

- 2. В остроугольном треугольнике *MNP* биссектриса угла *M* пересекает высоту *NK* в точке *O*, причем OK = 9 см. Найдите расстояние OH от точки O до прямой MN.
- з. Постройте прямоугольный треугольник по гипотенузе и острому углу.
- 4*. С помощью циркуля и линейки постройте угол, равный 105°

Вариант 2

1. Дано: 1 = 2 = 90°, AD = BC (Рис. 2).

Доказать: AB = DC.

- 2. В прямоугольном треугольнике DCE с прямым углом C проведена биссектриса EF, причем FC = 13 см. Найдите расстояние FH от точки F до прямой DE.
- з. Постройте прямоугольный треугольник по катету и прилежащему к нему острому углу.
- 4*. С помощью циркуля и линейки постройте угол, равный 165°.

Критерии оценок

Оценка «5» - 4 правильно выполненных заданий

Оценка «4» - 4 выполненных заданий с недочетами

Оценка «3» - 3 правильно выполненных задания

Оценка «2» - 2 правильно выполненных заданий и меньше

К-7. ГОДОВАЯ КОНТРОЛЬНАЯ РАБОТА

Вариант А1

1.

Диагональ прямоугольника равна 41 см, а сторона—40 см. Найдите площадь прямоугольника.

2.

Основания трапеции относятся как 3:11, длина диагонали равна 42 см. Найдите отрезки, на которые делит эту диагональ другая диагональ трапеции.

3.

Хорда, перпендикулярная диаметру, делит его на отрезки 5 см и 45 см. Найдите длину хорды.

Вариант Б1

1.

Диагонали ромба относятся как 3:4, а площадь ромба равна 24 см². Найдите периметр ромба.

2.

Точка пересечения диагоналей трапеции делит одну из них в отношении 7:15, средняя линия трапеции равна 44 см. Найдите основания трапеции.

Вариант А2

1.

Диагональ ромба равна 30 см, а сторона — 17 см. Найдите площадь ромба.

2.

Сумма оснований трапеции равна 36 см. Диагональ трапеции точкой пересечения с другой диагональю делится в отношении 2:7. Найдите основания трапеции.

3.

Хорда длиной 30 см, перпендикулярная диаметру, делит его в отношении 1:9. Найдите диаметр окружности.

Вариант Б2

1.

Диагонали ромба относятся как 3:4, а периметр равен 200 см. Найдите площадь ромба.

2.

Точка пересечения диагоналей трапеции делит одну из них на отрезки 5 см и 17 см, а разность оснований трапеции равна 36 см. Найдите среднюю линию трапеции.

В окружности проведены две пересекающиеся хорды. Одна из них делится на отрезки 3 см и 12 см, а другая — пополам. Найдите длину второй хорды.

3.

В окружности проведены две пересекающиеся хорды. Одна из них делится на отрезки 2 см и 6 см, а длина другой хорды равна 7 см. Найдите отрезки второй хорды.

Вариант В1

1.

Высота, проведенная из вершины тупого угла ромба, делит его сторону на отрезки 5 см и 8 см, считая от вершины острого угла. Найдите площади частей, на которые делит ромб эта высота.

2.

В равнобедренную трапецию вписана окружность. Точка касания делит боковую сторону в отношении 9:16, высота трапеции равна 24 см. Найдите среднюю линию трапеции.

3.

Из точки окружности проведены диаметр и хорда. Длина хорды равна 30 см, а ее проекция на диаметр меньше радиуса окружности на 7 см. Найдите радиус окружности.

Вариант В2

1.

Высота, проведенная из вершины тупого угла ромба, равна 24 см и делит сторону в отношении 7:18, считая от вершины острого угла. Найдите площади частей, на которые делит ромб эта высота.

2.

В равнобедренную трапецию вписана окружность радиуса 6 см. Точка касания делит боковую сторону на отрезки, разность между которыми равна 5 см. Найдите среднюю линию трапеции.

3.

Из точки окружности проведены диаметр и хорда длиной 30 см. Проекция хорды на диаметр относится к радиусу окружности как 18:25. Найдите радиус окружности.

Контрольная работа

Площади фигур

A1. В прямоугольнике ABCD AB = 24 см, AC = 25 см. Найдите площадь прямоугольника.
A2. Найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60° .
АЗ. Найдите площадь ромба, если его диагонали равны 14 и 6 см.
А4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.
B1. Середины оснований трапеции соединены отрезком. Докажите, что полученные две трапеции равновелики.

- A1. В ромбе ABCD AB = 10 см, меньшая диагональ AC = 12 см. Найдите площадь ромба.
- А2. Найдите площадь равнобедренного треугольника, если его боковая сторона равна 6 см, а угол при вершине равен 60° .

- А3. Найдите площадь прямоугольника, если его диагональ равна 13 см, а одна из сторон 5 см.
- A4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.

В1. Докажите, что медиана треугольника разбивает его на два треугольника одинаковой площади.

Контрольная работа

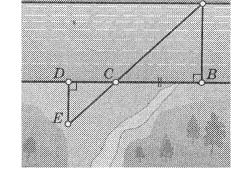
Подобные треугольники

Вариант 1

- А1. Отрезки АВ и СМ пересекаются в точке О так, что АС | ВМ. Найдите длину отрезка СМ, если АО=12 см, ОВ=3 см, СО=8 см.
- А2. В треугольнике ABC точка К принадлежит стороне AB, а точка P стороне AC. Отрезок KP|| BC. Найдите периметр треугольника AKP, если AB=9 см, BC=12 см, AC=15 см и AK: KB=2:1.
- A3. В треугольнике ABC угол C= 90° . AC=15cm, BC=8 cm. Найдите $\sin A$, $\cos A$, tgA, $\sin B$, $\cos B$, tgB.

В1. Между пунктами A и B находится болото. Чтобы найти расстояние между A и B, отметили вне болота произвольную точку C, измерили расстояние AC = 600 м и BC = 400 м, а также ∠ ACB = 62°.

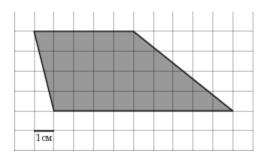
Начертите план в масштабе 1 : 10 000 и найдите по нему расстояние между пунктами А и В.


_

Вариант №2

- А1. Отрезки АВ и СМ пересекаются в точке О так, что АС | ВМ. Найдите длину отрезка СМ, если АС=15 см, ВМ=3 см, СО=10 см.
- А2. В треугольнике ABC точка К принадлежит стороне AB, а точка P стороне AC. Отрезок KP|| BC. Найдите периметр треугольника AKP, если AB=16 см, BC=8 см, AC=15 см и AK =4 см.
- A3. В треугольнике ABC угол C= 90° . AC=4 см, AB=5 см. Найдите $\sin A$, $\cos A$, tgA, $\sin B$, $\cos B$, tgB.

В1. На рисунке показано, как можно определить ширину реки АВ, построив на местности подобные треугольники. Обоснуйте: какие построения выполнены; чем мы пользуемся для определения

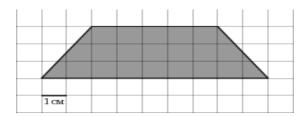


ширины реки? Выполните необходимые измерения и определите ширину реки

(масштаб рисунка 1 : 1000).

1 вариант

- 1. Площадь прямоугольника ABCD равна 15. Найдите сторону BC прямоугольника, если известно, что AB = 3.
- 2. Найдите медиану прямоугольного треугольника, проведенную к гипотенузе, равной 14.
- 3. Два острых угла прямоугольного треугольника относятся как 4:5. Найдите больший острый угол треугольника. Ответ дайте в градусах.
- 4. В ромбе ABCD проведена диагональ AC. Найдите DABC, если известно, что угол $ACD = 25^{\circ}$.
- 5. В прямоугольном треугольнике АВК гипотенуза АВ равна 13, катет АК равен 12, катет ВК равен 8. Найдите тангенс угла А.


- 6. На клетчатой бумаге с клетками размером 1 см х 1 см изображена фигура (см. рисунок). Найдите ее площадь в квадратных сантиметрах
- 7. Укажите в ответе номера верных утверждений в порядке возрастания:
 - 1. в прямоугольном треугольнике высота может совпадать с одной из его сторон.
 - 2. точка пересечения высот произвольного треугольника центр окружности, описанной около этого треугольника.
 - 3. высота может лежать и вне треугольника.
 - 4. треугольник со сторонами 6,8,10 прямоугольный.
 - 5. существует треугольник со сторонами 6, 8, 15.
- 8. Человек ростом 1,7 м стоит на расстоянии 12 шагов от столба, на котором висит фонарь. Тень человека равна двум шагам. На какой высоте (в метрах) расположен фонарь?
- 9. Прямая касается окружности в точке К. Точка О центр окружности. Хорда КМ образует с касательной угол, равный 83°. Найдите величину угла ОМК. Ответ дайте в градусах.

2 вариант

- 1. Площадь параллелограмма ABCD равна 35. Найдите сторону BC параллелограмма, если известно, что высота, проведенная к этой стороне, равна 7.
- 2. Найдите гипотенузу прямоугольного треугольника, если медиана, проведенная к этой гипотенузе, равна 4.
- 3. Один из двух острых угла прямоугольного треугольника на 20^0 больше другого. Найдите больший острый угол. Ответ дайте в градусах.
- 4. В ромбе ABCD проведена диагональ AC. Найдите ĐABC, если известно, что

угол ACD = 15° .

5. В прямоугольном треугольнике АВК гипотенуза АВ равна 16, катет АК равен 12, катет ВК равен 8. Найдите синус угла А.

6.На клетчатой бумаге с клетками размером 1 см х 1 см изображена фигура (см. рисунок). Найдите ее площадь в квадратных сантиметрах

- 7. Укажите в ответе номера верных утверждений в порядке возрастания:
 - 1. в равностороннем треугольнике все высоты равны.
 - 2. точка пересечения медиан произвольного треугольника это центр окружности, описанной около этого треугольника.
 - 3. медиана, это отрезок соединяющий середины двух сторон треугольника.
 - 4. треугольник со сторонами 6,8,9 не существует.
 - 5. треугольник со сторонами 3, 4, 5 прямоугольный.

8. Найдите длину солнечной тени от здания высотой 16 м, если солнечная тень от человека ростом 1 м 80 см равна 2 м 70 см.

9. Касательные в точках A и B к окружности с центром O пересекаются под углом 72°. Найдите угол ABO. Ответ дайте в градусах.

Критерии оценок:

11-13 б – оценка «5»

9-10 б - оценка «4»

7-8 б – оценка «3»

Итоговая контрольная работа

- **1.** В равнобедренный треугольник с основанием 10 см и боковой стороной $5\sqrt{2} \text{ см}$ вписан квадрат так, что две его вершины лежат на основании, а другие две вершины на боковых сторонах. Найдите сторону квадрата.
- 2. Найдите площадь круга, вписанного в ромб с диагоналями, равными 12 см и 16 см.
- **3.** Найдите длину медианы BM треугольника ABC, если координаты вершин треугольника A (2;5), B (0;0), C(4;3).

- **4.** Точка M является серединой боковой стороны AB трапеции ABCD. Найдите площадь трапеции, если площадь треугольника MCD равна 28 см².
- **5.** Окружность радиуса 2 см, центр O которой лежит на гипотенузе AC прямоугольного треугольника ABC, касается его катетов. Найдите площадь треугольника ABC, если $OA = \sqrt{5}$ см.

Вариант 2.

- **1.** В равнобедренный треугольник с основанием 14 см и боковой стороной $7\sqrt{2}$ см вписан квадрат так, что две его вершины лежат на основании, а другие две вершины на боковых сторонах. Найдите сторону квадрата.
- 2. Найдите площадь круга, вписанного в ромб с диагоналями, равными 16 см и 30 см.
- **3.** Найдите длину медианы CP треугольника ABC, если координаты вершин треугольника A (-3;-2), B (-13;14), C(0;0).
- **4.** Точка M является серединой боковой стороны AB трапеции ABCD. Найдите площадь треугольника MCD, если площадь трапеции равна 38 см².
- **5.** Окружность радиуса 3 см, центр O которой лежит на гипотенузе AC прямоугольного треугольника ABC, касается его катетов. Найдите площадь треугольника ABC, если $OA = \sqrt{10}$ см.

Тест по геометрии 9 класс (1 полугодие) 1 вариант

Часть А. Обведите кружком верный ответ.

(За каждое верно выполненное задание – 1 балл)

- **А1**. Если \vec{a} {3; -6}, \vec{b} {-2; 4}, $\vec{c} = -\frac{1}{3}\vec{a} + \frac{1}{2}\vec{b}$, то:
 - 1) \vec{c} {2; -4}; 2) \vec{c} {1; 1}; 3) \vec{c} {-2; 4}; 4) \vec{c} {-2; -4}; 5)другой ответ.
- **А2**. Окружность задана уравнением $x^2 + (y-2)^2 = 7$. Какие координаты центра?
 - 1). (0; -2); 2) (1;2); 3) (0; 2); 4) (-1; 2); 5) другой ответ.
- А3. Для треугольника АВС справедливо равенство:
 - 1) $AB^2 = BC^2 + AC^2 2BC \cdot AC \cdot \cos \angle BCA$;
 - 2) $BC^2 = AB^2 + AC^2 2AB \cdot AC \cdot \cos \angle ABC$;
 - 3) $AC^2 = AB^2 + BC^2 2AB \cdot BC \cdot \cos \angle ACB$;
 - 4) $BC^2 = AB^2 + AC^2 2AB \cdot AC \cdot \cos \angle BCA$;
 - 5) другой ответ.

А4. В треугольнике СДЕ:

- 1) $C \coprod \cdot \sin C = \coprod E \cdot \sin E$; 3) $C \coprod \cdot \sin E = \coprod E \cdot \sin C$;
- 2) $C \Pi \cdot \sin \Pi = \Pi E \cdot \sin E$; 4) $\Pi E \cdot \sin \Pi = CE \sin E$; 5) другой ответ.

Часть В. Выполните задание и впишите полученный ответ.

(За каждое верно выполненное задание – 2 балла)

B1 . Сторона ромба MNPK равна 3 см, $\angle P = 60^{\circ}$. Найдите скалярное произведение векторов \overrightarrow{MN} и \overrightarrow{MK} .
Ответ:
B2. В треугольнике MNK, \angle MNK = 75°, \angle MKN = 45°, NK = $4\sqrt{3}$ см. Найдите MN.
Ответ:
Часть С. На свободной части листа напишите подробное решение задания. (За верно выполненное задание – 3 балла)
C1 . В треугольнике ABC AB = 6 см, AC = 8 см, а его площадь равна $12\sqrt{2}$ см ² . Найдите третью сторону треугольника, если известно, что угол A – тупой.
2 вариант
Часть А. Обведите кружком верный ответ.
(За каждое верно выполненное задание – 1 балл)
А1. Если \vec{a} {4; -2}, \vec{b} {6; -3}, $\vec{c} = \frac{1}{2} \vec{a} - \frac{1}{3} \vec{b}$, то:
1) \vec{c} {-4; 2}; 2) \vec{c} {4; -2}; 3) \vec{c} {4; 2}; 4) \vec{c} {-4; -2}; 5)другой ответ.
A2. Окружность задана уравнением $(x - 6)^2 + y^2 = 5$. Какие координаты центра?
1). (-6;1); 2) (-6;0); 3) (6;0); 4) (-6;-1); 5) другой ответ.
А3. Для треугольника АВС справедливо равенство:
1) $\frac{AB}{\sin A} = \frac{BC}{\sin B} = \frac{CA}{\sin C};$ 3) $\frac{AB}{\sin C} = \frac{BC}{\sin A} = \frac{AC}{\sin B};$ 2) $\frac{AB}{\sin B} = \frac{BC}{\sin C} = \frac{CA}{\sin A};$ 4) $\frac{AC}{\sin B} = \frac{AB}{\sin A} = \frac{BC}{\sin C};$ 5) другой ответ.
А4. В треугольнике АВС:
 AB· sin C = AC · sin B; AB · sin A = AC · sin B; AB · sin B = AC · sin C; BC · sin A = CA· sin C; другой ответ.
Часть В. Выполните задание и впишите полученный ответ.
(За каждое верно выполненное задание – 2 балла)
B1. Сторона ромба КLMP равна 5 см, $\angle M = 60^{\circ}$. Найдите скалярное произведение векторов \overrightarrow{KL} и \overrightarrow{KP} .
Ответ:
B2. В треугольнике MNK, ∠ MNK = 15° , ∠ MKN = 120° , NK= $\sqrt{2}$ см. Найдите MN.
Ответ:

Часть С. На свободной части листа напишите подробное решение задания. (За верно выполненное задание – 3 балла)

C1. В треугольнике ABC AB = 5 см, BC = 4 см, а его площадь равна $5\sqrt{3}$ см². Найдите третью сторону треугольника, если известно, что угол B – острый.

Критерии оценок:

оценка «3» - 3-5 баллов оценка «4» - 6-8 баллов оценка «5» - 9-11 баллов оценка «2» - менее 3 баллов